Robust Stability of Time-Varying Delay Systems: The Quadratic Separation Approach
نویسندگان
چکیده
In this article, we are interested in analysing stability of systems that incorporate time-varying delays in their dynamic. The Lyapunov-Krasovskii approach is definitely the most popular method to address this issue and many results have proposed new functionals and enhanced techniques for deriving less conservative stability conditions. In this present work, we propose an original approach: the quadratic separation. To this end, the delay operator properties are exploited to provide delay range stability conditions. In particular,L2-norm of delay-dependent operators are computed so as to reduce the conservatism of the approach. Moreover, the main result is able to assess the stability of non-small delay systems, i.e, it can detect a stability interval for systems that are unstable without any delay. Several examples illustrate the benefit of our methodology.
منابع مشابه
Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH
In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملGLOBAL ROBUST STABILITY CRITERIA FOR T-S FUZZY SYSTEMS WITH DISTRIBUTED DELAYS AND TIME DELAY IN THE LEAKAGE TERM
The paper is concerned with robust stability criteria for Takagi- Sugeno (T-S) fuzzy systems with distributed delays and time delay in the leakage term. By exploiting a model transformation, the system is converted to one of the neutral delay system. Global robust stability result is proposed by a new Lyapunov-Krasovskii functional which takes into account the range of delay and by making use o...
متن کامل